TY - GEN
T1 - Characteristics of intense pulsed heavy ion beam by bipolar pulse accelerator
AU - Okajima, K.
AU - Ohashi, H.
AU - Ito, H.
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2015/1/16
Y1 - 2015/1/16
N2 - We have developed a new type of a pulsed ion beam accelerator named 'bipolar pulse accelerator' for improvement of the purity of the intense pulsed ion beam. The system utilizes a magnetically insulated accelerate on gap and was operated with the bipolar pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside of the grounded anode. Source plasma (nitrogen) of current density of ≈30 A/cm2 and pulse duration of ≈1.0 μs was injected into the acceleration gap. When the bipolar pulse with voltage of about ±110 kV and pulse duration of about 70 ns was applied to the drift tube, the ions were successfully accelerated from the grounded anode to the drift tube in the 1st gap by the negative pulse of the bipolar pulse. The pulsed ion beam with current density of 70 A/cm2 and pulse duration of ≈50 ns was obtained at 50 mm downstream from the anode surface. The energy spectrum of the ion beam was evaluated by a magnetic energy spectrometer. The ion energy was in reasonable good agreement with the acceleration voltage, i.e., 1st pulse (negative pulse) voltage of the bipolar pulse.
AB - We have developed a new type of a pulsed ion beam accelerator named 'bipolar pulse accelerator' for improvement of the purity of the intense pulsed ion beam. The system utilizes a magnetically insulated accelerate on gap and was operated with the bipolar pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside of the grounded anode. Source plasma (nitrogen) of current density of ≈30 A/cm2 and pulse duration of ≈1.0 μs was injected into the acceleration gap. When the bipolar pulse with voltage of about ±110 kV and pulse duration of about 70 ns was applied to the drift tube, the ions were successfully accelerated from the grounded anode to the drift tube in the 1st gap by the negative pulse of the bipolar pulse. The pulsed ion beam with current density of 70 A/cm2 and pulse duration of ≈50 ns was obtained at 50 mm downstream from the anode surface. The energy spectrum of the ion beam was evaluated by a magnetic energy spectrometer. The ion energy was in reasonable good agreement with the acceleration voltage, i.e., 1st pulse (negative pulse) voltage of the bipolar pulse.
UR - http://www.scopus.com/inward/record.url?scp=84923032731&partnerID=8YFLogxK
U2 - 10.1109/PLASMA.2014.7012754
DO - 10.1109/PLASMA.2014.7012754
M3 - 会議への寄与
AN - SCOPUS:84923032731
T3 - ICOPS/BEAMS 2014 - 41st IEEE International Conference on Plasma Science and the 20th International Conference on High-Power Particle Beams
BT - ICOPS/BEAMS 2014 - 41st IEEE International Conference on Plasma Science and the 20th International Conference on High-Power Particle Beams
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 41st IEEE International Conference on Plasma Science, ICOPS 2014 and the 20th IEEE International Conference on High-Power Particle Beams, BEAMS 2014
Y2 - 25 May 2014 through 29 May 2014
ER -