Visual Pursuit Control based on Gaussian Processes with Switched Motion Trajectories

Marco Omainska*, Junya Yamauchi*, Masayuki Fujita*

*この論文の責任著者

研究成果: ジャーナルへの寄稿会議記事査読

抄録

This paper considers a scenario of pursuing a moving target that may switch behaviors due to external factors in a dynamic environment by motion estimation using visual sensors. First, we present an improved Visual Motion Observer with switched Gaussian Process models for an extended class of target motion profiles. We then propose a pursuit control law with an online method to estimate the switching behavior of the target by the GP model uncertainty. Next, we prove ultimate boundedness of the control and estimation errors for the switch in target behavior with high probability. Finally, a Digital Twin simulation demonstrates the effectiveness of the proposed switching estimation and control law to prove applicability to real world scenarios.

本文言語英語
ページ(範囲)190-195
ページ数6
ジャーナルIFAC Proceedings Volumes (IFAC-PapersOnline)
55
27
DOI
出版ステータス出版済み - 2022/09/01
イベント9th IFAC Symposium on Mechatronic Systems, MECHATRONICS 2022 - Los Angeles, 米国
継続期間: 2022/09/062022/09/09

ASJC Scopus 主題領域

  • 制御およびシステム工学

フィンガープリント

「Visual Pursuit Control based on Gaussian Processes with Switched Motion Trajectories」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル