TY - JOUR
T1 - Hepatocyte growth factor promotes colonic epithelial regeneration via Akt signaling
AU - Kanayama, Masami
AU - Takahara, Terumi
AU - Yata, Yutaka
AU - Xue, Feng
AU - Shinno, Eiji
AU - Nonome, Kazunobu
AU - Kudo, Hiroshi
AU - Kawai, Kengo
AU - Kudo, Takahiko
AU - Tabuchi, Yoshiaki
AU - Watanabe, Akiharu
AU - Sugiyama, Toshiro
PY - 2007/7
Y1 - 2007/7
N2 - Hepatocyte growth factor (HGF) can promote the regeneration of injured organs, including HGF gene therapy by electroporation (EP) for liver injury. In this study, we investigated the effect of HGF on dextran sulfate sodium-induced colitis and tried to clarify the regenerative mechanisms of colonic epithelial cells and the signaling pathway involved. Colitis was induced by dextran sulfate sodium in mice, together with HGF gene transfer by EP. On day 10, the colitis was evaluated histologically and by Western blot analysis. The colonic epithelial cell line MCE301 was exposed to HGF protein, and its proliferation and activated signaling pathway were analyzed. In vivo, the histological score improved and the number of Ki-67-positive epithelial cells increased in the HGF-treated mice compared with the controls. Western blot analysis showed enhanced expression of phospho-Akt in the HGF-treated mice compared with the controls. In vitro, HGF stimulated the proliferation of MCE301 cells. There was enhanced phospho-Akt expression for more than 48 h after HGF stimulation, although phospho-ERK1/2 was enhanced for only 10 min. LY-294002 or Akt small interfering RNA suppressed cell proliferation induced by HGF. Thus HGF induces the proliferation of colonic epithelial cells via the phosphatidylinositol 3-kinase/Akt signaling pathway. HGF gene therapy can attenuate acute colitis via epithelial cell proliferation through the PI3K/Akt pathway. These data suggested that HGF gene therapy by EP may be effective for the regeneration and repair of injured epithelial cells in inflammatory bowel disease.
AB - Hepatocyte growth factor (HGF) can promote the regeneration of injured organs, including HGF gene therapy by electroporation (EP) for liver injury. In this study, we investigated the effect of HGF on dextran sulfate sodium-induced colitis and tried to clarify the regenerative mechanisms of colonic epithelial cells and the signaling pathway involved. Colitis was induced by dextran sulfate sodium in mice, together with HGF gene transfer by EP. On day 10, the colitis was evaluated histologically and by Western blot analysis. The colonic epithelial cell line MCE301 was exposed to HGF protein, and its proliferation and activated signaling pathway were analyzed. In vivo, the histological score improved and the number of Ki-67-positive epithelial cells increased in the HGF-treated mice compared with the controls. Western blot analysis showed enhanced expression of phospho-Akt in the HGF-treated mice compared with the controls. In vitro, HGF stimulated the proliferation of MCE301 cells. There was enhanced phospho-Akt expression for more than 48 h after HGF stimulation, although phospho-ERK1/2 was enhanced for only 10 min. LY-294002 or Akt small interfering RNA suppressed cell proliferation induced by HGF. Thus HGF induces the proliferation of colonic epithelial cells via the phosphatidylinositol 3-kinase/Akt signaling pathway. HGF gene therapy can attenuate acute colitis via epithelial cell proliferation through the PI3K/Akt pathway. These data suggested that HGF gene therapy by EP may be effective for the regeneration and repair of injured epithelial cells in inflammatory bowel disease.
KW - Apoptosis
KW - Hepatocyte growth factor
KW - Inflammatory bowel disease
KW - Proliferation
UR - http://www.scopus.com/inward/record.url?scp=34547095045&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00068.2007
DO - 10.1152/ajpgi.00068.2007
M3 - 学術論文
C2 - 17412827
AN - SCOPUS:34547095045
SN - 0193-1857
VL - 293
SP - G230-G239
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 1
ER -