TY - JOUR
T1 - Equilibrium of Low- and High-Spin States of Ni(II) Complexes Controlled by the Donor Ability of the Bidentate Ligands
AU - Ohtsu, Hideki
AU - Tanaka, Koji
PY - 2004/5/3
Y1 - 2004/5/3
N2 - Low-spin nickel(II) complexes containing bidentate ligands with modulated nitrogen donor ability, Py(Bz)2 or MePy-(Bz)2 (Py(Bz) 2 = N,N-bis(benzyl)-N-[(2-pyridyl)methyl]amine, MePy(Bz)2 = N,N-bis(benzyl)-N-[(6-methyl-2-pyridyl)-methyl]amine), and a β-diketonate derivative, tBuacacH (tBuacacH = 2,2,6,6-tetramethyl-3,5-heptanedione), represented as [Ni(Py(Bz) 2)(tBuacac)](PF6) (1) and [NI(MePy(Bz) 2)(tBuacac)](PF6) (2) have been synthesized. In addition, the corresponding high-spin nickel(II) complexes having a nitrate ion, [Ni(Py(Bz)2)(tBuacac)(NO3)] (3) and [Ni(MePy(Bz) 2)(tBuacac)(NO3)] (4), have also been synthesized for comparison. Complexes 1 and 2 have tetracoordinate low-spin square-planar structures, whereas the coordination environment of the nickel ion in 4 is a hexacoordinate high-spin octahedral geometry. The absorption spectra of low-spin complexes 1 and 2 in a noncoordinating solvent, dichloromethane (CH2Cl2), display the characteristic absorption bands at 500 and 540 nm, respectively. On the other hand, the spectra of a CH 2Cl2 solution of high-spin complexes 3 and 4 exhibit the absorption bands centered at 610 and 620 nm, respectively. The absorption spectra of 1 and 2 in N,N-dimethylformamide (DMF), being a coordinating solvent, are quite different from those in CH2Cl2, which are nearly the same as those of 3 and 4 in CH2Cl2. This result indicates that the structures of 1 and 2 are converted from a low-spin square-planar to a high-spin octahedral configuration by the coordination of two DMF molecules to the nickel ion. Moreover, complex 1 shows thermochromic behavior resulting from the equilibrium between low-spin square-planar and high-spin octahedral structures in acetone, while complex 2 exists only as a high-spin octahedral configuration in acetone at any temperature. Such drastic differences in the binding constants and thermochromic properties can be ascribed to the enhancement of the acidity of the nickel ion of 2 by the steric effect of the o-methyl group in the MePy(Bz)2 ligand in 2, which weakens the Ni-N(pyridine) bond length compared with that of the nonsubstituted Py(Bz)2 ligand in 1.
AB - Low-spin nickel(II) complexes containing bidentate ligands with modulated nitrogen donor ability, Py(Bz)2 or MePy-(Bz)2 (Py(Bz) 2 = N,N-bis(benzyl)-N-[(2-pyridyl)methyl]amine, MePy(Bz)2 = N,N-bis(benzyl)-N-[(6-methyl-2-pyridyl)-methyl]amine), and a β-diketonate derivative, tBuacacH (tBuacacH = 2,2,6,6-tetramethyl-3,5-heptanedione), represented as [Ni(Py(Bz) 2)(tBuacac)](PF6) (1) and [NI(MePy(Bz) 2)(tBuacac)](PF6) (2) have been synthesized. In addition, the corresponding high-spin nickel(II) complexes having a nitrate ion, [Ni(Py(Bz)2)(tBuacac)(NO3)] (3) and [Ni(MePy(Bz) 2)(tBuacac)(NO3)] (4), have also been synthesized for comparison. Complexes 1 and 2 have tetracoordinate low-spin square-planar structures, whereas the coordination environment of the nickel ion in 4 is a hexacoordinate high-spin octahedral geometry. The absorption spectra of low-spin complexes 1 and 2 in a noncoordinating solvent, dichloromethane (CH2Cl2), display the characteristic absorption bands at 500 and 540 nm, respectively. On the other hand, the spectra of a CH 2Cl2 solution of high-spin complexes 3 and 4 exhibit the absorption bands centered at 610 and 620 nm, respectively. The absorption spectra of 1 and 2 in N,N-dimethylformamide (DMF), being a coordinating solvent, are quite different from those in CH2Cl2, which are nearly the same as those of 3 and 4 in CH2Cl2. This result indicates that the structures of 1 and 2 are converted from a low-spin square-planar to a high-spin octahedral configuration by the coordination of two DMF molecules to the nickel ion. Moreover, complex 1 shows thermochromic behavior resulting from the equilibrium between low-spin square-planar and high-spin octahedral structures in acetone, while complex 2 exists only as a high-spin octahedral configuration in acetone at any temperature. Such drastic differences in the binding constants and thermochromic properties can be ascribed to the enhancement of the acidity of the nickel ion of 2 by the steric effect of the o-methyl group in the MePy(Bz)2 ligand in 2, which weakens the Ni-N(pyridine) bond length compared with that of the nonsubstituted Py(Bz)2 ligand in 1.
UR - http://www.scopus.com/inward/record.url?scp=2142641601&partnerID=8YFLogxK
U2 - 10.1021/ic035486+
DO - 10.1021/ic035486+
M3 - 学術論文
C2 - 15106994
AN - SCOPUS:2142641601
SN - 0020-1669
VL - 43
SP - 3024
EP - 3030
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 9
ER -