TY - JOUR
T1 - Enhancement of hyperthermia-induced apoptosis by a free radical initiator, 2,2′-azobis (2-amidinopropane) dihydrochloride, in human histiocytic lymphoma U937 cells
AU - Li, Fu Jun
AU - Kondo, Takashi
AU - Zhao, Qing Li
AU - Tanabe, Kiyoshi
AU - Ogawa, Ryohei
AU - Li, Min
AU - Arai, Yoko
N1 - Funding Information:
This study was supported by the Japan-China Medical Association Nippon Foundation. This study was sopprted in part by the Grant in Aid for Scientific Research on Priority Areas (C) (12217049) from the Ministry of Education, Science, Sports and Culture, Japan.
PY - 2001
Y1 - 2001
N2 - To elucidate the mechanism how a free radical initiator, 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH), induces cell death at hyperthermic temperatures, apoptosis in a human histiocytic lymphoma cell line, U937, was investigated. Free radical formation deriving from the thermal decomposition of AAPH was examined by spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). An assay for DNA fragmentation, observation of nuclear morphological changes, and flow cytometry for phosphatidylserine (PS) externalization were used to detect apoptosis and revealed enhancement of 44.0 °C hyperthermia-induced apoptosis by free radicals due to AAPH. However, free radicals alone derived from AAPH did not induce apoptosis. Hyperthermia induced the production of lipid peroxidation (LPO), an increase in intracellular Ca2+ concentration ([Ca2+]i) and enhanced expression of the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). The effects of hyperthermia on LPO and [Ca2+]i were enhanced markedly by the combination with AAPH. A significant decrease in Bcl-2 expression, increase in Bax expression, a loss of mitochondrial membrane potential (Δψm) and a marked increase in cytochrome c expression were found only in cells treated with hyperthermia and AAPH. Although an intracellular Ca2+ ion chelator, BAPTA-AM, completely inhibited DNA fragmentation, water-soluble vitamin E, Trolox, only partially suppressed DNA fragmentation and the increase in [Ca2+]i. In contrast, LPO was inhibited completely by Trolox, but no inhibition by BAPTA-AM was found. These results suggest that apoptosis induced by hyperthermia alone is due to the increase in [Ca2+]i arising from increased expression of IP3R1 and LPO. Additional increase in [Ca2+]i due to increased LPO and the activation of mitochondria-caspase dependent pathway play a major role in the enhancement of apoptosis by the combination with hyperthermia and AAPH.
AB - To elucidate the mechanism how a free radical initiator, 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH), induces cell death at hyperthermic temperatures, apoptosis in a human histiocytic lymphoma cell line, U937, was investigated. Free radical formation deriving from the thermal decomposition of AAPH was examined by spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). An assay for DNA fragmentation, observation of nuclear morphological changes, and flow cytometry for phosphatidylserine (PS) externalization were used to detect apoptosis and revealed enhancement of 44.0 °C hyperthermia-induced apoptosis by free radicals due to AAPH. However, free radicals alone derived from AAPH did not induce apoptosis. Hyperthermia induced the production of lipid peroxidation (LPO), an increase in intracellular Ca2+ concentration ([Ca2+]i) and enhanced expression of the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). The effects of hyperthermia on LPO and [Ca2+]i were enhanced markedly by the combination with AAPH. A significant decrease in Bcl-2 expression, increase in Bax expression, a loss of mitochondrial membrane potential (Δψm) and a marked increase in cytochrome c expression were found only in cells treated with hyperthermia and AAPH. Although an intracellular Ca2+ ion chelator, BAPTA-AM, completely inhibited DNA fragmentation, water-soluble vitamin E, Trolox, only partially suppressed DNA fragmentation and the increase in [Ca2+]i. In contrast, LPO was inhibited completely by Trolox, but no inhibition by BAPTA-AM was found. These results suggest that apoptosis induced by hyperthermia alone is due to the increase in [Ca2+]i arising from increased expression of IP3R1 and LPO. Additional increase in [Ca2+]i due to increased LPO and the activation of mitochondria-caspase dependent pathway play a major role in the enhancement of apoptosis by the combination with hyperthermia and AAPH.
KW - 2,2′-azobis (2-amidinopropane) dihydrochloride
KW - Apoptosis
KW - Hyperthermia
KW - Inositol 1,4,5-trisphosphate receptor
KW - Intracellular Ca
KW - Lipid peroxidation
KW - Mitochondrial membrane potential
UR - http://www.scopus.com/inward/record.url?scp=0034905658&partnerID=8YFLogxK
U2 - 10.1080/10715760100300821
DO - 10.1080/10715760100300821
M3 - 学術論文
C2 - 11697127
AN - SCOPUS:0034905658
SN - 1071-5762
VL - 35
SP - 281
EP - 299
JO - Free Radical Research
JF - Free Radical Research
IS - 3
ER -