Diagnostic performance between contrast enhancement, proton MR spectroscopy, and amide proton transfer imaging in patients with brain tumors

Akihiko Sakata, Yasutaka Fushimi*, Tomohisa Okada, Yoshiki Arakawa, Takeharu Kunieda, Sachiko Minamiguchi, Aki Kido, Naotaka Sakashita, Susumu Miyamoto, Kaori Togashi

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

37 被引用数 (Scopus)

抄録

Purpose: To explore the relationship among parameters of magnetic resonance spectroscopy (MRS) and amide proton transfer (APT) imaging, and to assess the diagnostic performance of MRS and APT imaging for grading brain tumors in comparison with contrast enhancement of conventional MRI for preoperative grading in patients with brain tumor. Materials and Methods: Institutional Review Board approval and written informed consent were obtained. Forty-one patients with suspected brain tumors were enrolled in the study. Single-voxel MRS and 2D APT imaging of the same slice level were conducted using a 3T MRI scanner. Positive or negative contrast enhancement on T1-weighted images was assessed by two neuroradiologists. Correlations among metabolite concentrations, metabolite ratios, and calculated histogram parameters, including mean APT (APTmean) and the 90th percentile of APT (APT90) were assessed using Spearman's correlation coefficient. Diagnostic performance was evaluated with receiver operating characteristic (ROC) curve analysis for contrast enhancement and MRS and APT imaging. Values of P < 0.05 were considered statistically significant. Results: Positive correlations with statistical significance were found between total concentration of choline (Cho) and APT90 (r = 0.49), and between Cho/creatine (Cr) and APTmean (r = 0.65) as well as APT90 (r = 0.49). A negative correlation with statistical significance was observed between NAA/Cr and APTmean (r = −0.52). According to ROC curves, Cho/Cr, APTmean, APT90, demonstrated higher area under the curve (AUC) values than that of contrast enhancement in grading gliomas. Conclusion: Significant correlations were observed between metabolite concentrations and ratios on MRS and APT values. MRS and APT imaging showed comparable diagnostic capability for grading brain tumors, suggesting that both MRS and APT imaging offer potential for quantitatively assessing similar biological characteristics in brain tumors on noncontrast MRI. Level of Evidence: 2. Technical Efficacy: Stage 2. J. MAGN. RESON. IMAGING 2017;46:732–739.

本文言語英語
ページ(範囲)732-739
ページ数8
ジャーナルJournal of Magnetic Resonance Imaging
46
3
DOI
出版ステータス出版済み - 2017/09

ASJC Scopus 主題領域

  • 放射線学、核医学およびイメージング

フィンガープリント

「Diagnostic performance between contrast enhancement, proton MR spectroscopy, and amide proton transfer imaging in patients with brain tumors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル