Design of culture substrates for large-scale expansion of neural stem cells

Shuhei Konagaya, Koichi Kato, Tadashi Nakaji-Hirabayashi, Hiroo Iwata*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

23 被引用数 (Scopus)

抄録

Neural stem cells (NSCs) have been frequently used to investigate in vitro the molecular and cellular mechanisms underlying the development of the central nervous system (CNS). In addition, NSCs are regarded as one of the potential sources for the cell replacement therapy of CNS disorders. Most of these studies have utilized NSCs prepared by neurosphere culture. However, this method normally yields a heterogeneous population containing differentiated neural cells as well as NSCs. In addition, the rate of cell expansion is not high enough for obtaining a large quantity of NSCs in a short period. Here we report the design of culture substrates that allow highly selective and rapid expansion of NSCs. We synthesize epidermal growth factor fused with a hexahistidine sequence (EGF-His) and a polystyrene-binding peptide (EGF-PSt), and these engineered growth factors were surface-anchored to a nickel-chelated glass plate and a polystyrene dish, respectively. The EGF-His-chelated glass substrate was further used to assemble a culture module. Neurosphere-forming cells prepared from the fetal rat striatum were used to examine the selective expansion of NSCs using the EGF-His-chelated module and the EGF-PSt-bound polystyrene dish. Our results show that the culture module enables to selectively expand NSCs in a closed system more efficiently than the standard neurosphere culture. The EGF-PSt-bound polystyrene dish also permits efficient expansion of NSCs, providing a straightforward means to acquire a large quantity of pure NSCs in standard laboratories.

本文言語英語
ページ(範囲)992-1001
ページ数10
ジャーナルBiomaterials
32
4
DOI
出版ステータス出版済み - 2011/02

ASJC Scopus 主題領域

  • バイオエンジニアリング
  • セラミックおよび複合材料
  • 生物理学
  • 生体材料
  • 材料力学

フィンガープリント

「Design of culture substrates for large-scale expansion of neural stem cells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル