Cooperative visual pursuit control with learning of target motion via distributed Gaussian processes under varying visibility

Junya Yamauchi*, Makoto Saito, Marco Omainska, Takeshi Hatanaka, Masayuki Fujita

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

2 被引用数 (Scopus)

抄録

This paper considers vision-based cooperative control for robotic networks pursuing a target object based on distributed Gaussian processes. We consider a situation where networked multiple robots are learning unknown motion of the target as a Gaussian process from different datasets. In this scene, some robots may lose sight of the target due to the limited field of view. To address the issue, we introduce a notion of time varying visibility set. Then, we propose a control law based on a distributed Gaussian process model, which is constructed from the Gaussian process model of each robot. By applying the proposed law to the error system, it is shown that the estimation and control errors are ultimately bounded with probability. Finally, the effectiveness of the proposed method is verified by simulation.

本文言語英語
ページ(範囲)228-240
ページ数13
ジャーナルSICE Journal of Control, Measurement, and System Integration
15
2
DOI
出版ステータス出版済み - 2022

ASJC Scopus 主題領域

  • 制御およびシステム工学
  • コンピュータサイエンス一般

フィンガープリント

「Cooperative visual pursuit control with learning of target motion via distributed Gaussian processes under varying visibility」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル