Artifactual component classification from MEG data using support vector machine

Montri Phothisonothai*, Fang Duan, Hiroyuki Tsubomi, Aki Kondo, Kazuyuki Aihara, Yuko Yoshimura, Mitsuru Kikuchi, Yoshio Minabe, Katsumi Watanabe

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

9 被引用数 (Scopus)

抄録

Recently, an independent component analysis (ICA) has been proven to be an effective method for removing artifacts and noise in multi-channel physiological measures. ICA can extract independent component (IC) which was directly regarded as artifacts. In this paper, we propose an automatic method for classifying physiological artifacts from magnetoencephalogram (MEG) data. The artifactual ICs were classified based on support vector machine (SVM) algorithm. The following parameters: kurtosis (K), probability density (PD), central moment of frequency (CMoF), spectral entropy (SpecEn), and fractal dimension (FD) were used as input vector of SVM. The proposed method showed the average classification rates of 99.18%, 92.33%, and 98.15% for cardiac (EKG), ocular (EOG), and high-amplitude changes (HAM), respectively.

本文言語英語
ホスト出版物のタイトル5th 2012 Biomedical Engineering International Conference, BMEiCON 2012
DOI
出版ステータス出版済み - 2012
イベント5th 2012 Biomedical Engineering International Conference, BMEiCON 2012 - Muang, Ubon Ratchathani, タイ
継続期間: 2012/12/052012/12/07

出版物シリーズ

名前5th 2012 Biomedical Engineering International Conference, BMEiCON 2012

学会

学会5th 2012 Biomedical Engineering International Conference, BMEiCON 2012
国/地域タイ
CityMuang, Ubon Ratchathani
Period2012/12/052012/12/07

ASJC Scopus 主題領域

  • 生体医工学

フィンガープリント

「Artifactual component classification from MEG data using support vector machine」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル