TY - JOUR
T1 - A novel approach for UV-patterning with binary polymer brushes
AU - Li, Lifu
AU - Nakaji-Hirabayashi, Tadashi
AU - Kitano, Hiromi
AU - Ohno, Kohji
AU - Saruwatari, Yoshiyuki
AU - Matsuoka, Kazuyoshi
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - A mixed self-assembled monolayer (SAM) of an initiator (3-(2-bromo-2-isobutyryloxy)propyl triethoxysilane) for atom transfer radical polymerization (ATRP) and an agent (6-(triethoxysilyl)hexyl 2-(((methylthio)carbonothioyl)thio)-2-phenylacetate) for reversible addition-fragmentation chain transfer (RAFT) polymerization was constructed on the surface of a silicon wafer or glass plate by a silane coupling reaction. When a UV light at 254 nm was irradiated at the mixed SAM through a photomask, the surface density of the bromine atom at the end of BPE in the irradiated region was drastically reduced by UV-driven scission of the Br–C bond, as observed by X-ray photoelectron spectroscopy. Consequently, the surface-initiated (SI)-ATRP of 2-ethylhexyl methacrylate (EHMA) was used to easily construct the poly(EHMA) (PEHMA) brush domain. Subsequently, SI-RAFT polymerization of a zwitterionic vinyl monomer, carboxymethyl betaine (CMB), was performed. Using the sequential polymerization, the PCMB and PEHMA brush domains on the solid substrate could be very easily patterned. Patterning proteins and cells with the binary polymer brush is expected because the PCMB brush indicated strong suppression of protein adsorption and cell adhesion, and the PEHMA brush had non-polar properties. This technique is very simple and useful for regulating the shape and size of bio-fouling and anti-biofouling domains on solid surfaces.
AB - A mixed self-assembled monolayer (SAM) of an initiator (3-(2-bromo-2-isobutyryloxy)propyl triethoxysilane) for atom transfer radical polymerization (ATRP) and an agent (6-(triethoxysilyl)hexyl 2-(((methylthio)carbonothioyl)thio)-2-phenylacetate) for reversible addition-fragmentation chain transfer (RAFT) polymerization was constructed on the surface of a silicon wafer or glass plate by a silane coupling reaction. When a UV light at 254 nm was irradiated at the mixed SAM through a photomask, the surface density of the bromine atom at the end of BPE in the irradiated region was drastically reduced by UV-driven scission of the Br–C bond, as observed by X-ray photoelectron spectroscopy. Consequently, the surface-initiated (SI)-ATRP of 2-ethylhexyl methacrylate (EHMA) was used to easily construct the poly(EHMA) (PEHMA) brush domain. Subsequently, SI-RAFT polymerization of a zwitterionic vinyl monomer, carboxymethyl betaine (CMB), was performed. Using the sequential polymerization, the PCMB and PEHMA brush domains on the solid substrate could be very easily patterned. Patterning proteins and cells with the binary polymer brush is expected because the PCMB brush indicated strong suppression of protein adsorption and cell adhesion, and the PEHMA brush had non-polar properties. This technique is very simple and useful for regulating the shape and size of bio-fouling and anti-biofouling domains on solid surfaces.
KW - Atom transfer radical polymerization (ATRP)
KW - Cell adhesion
KW - Patterning with binary polymer brushes
KW - Reversible addition-fragmentation chain transfer (RAFT) polymerization
KW - UV irradiation
UR - http://www.scopus.com/inward/record.url?scp=85031502873&partnerID=8YFLogxK
U2 - 10.1016/j.colsurfb.2017.10.022
DO - 10.1016/j.colsurfb.2017.10.022
M3 - 学術論文
C2 - 29040833
AN - SCOPUS:85031502873
SN - 0927-7765
VL - 161
SP - 42
EP - 50
JO - Colloids and Surfaces B: Biointerfaces
JF - Colloids and Surfaces B: Biointerfaces
ER -