The metabolic stress-activated checkpoint LKB1-MARK3 axis acts as a tumor suppressor in high-grade serous ovarian carcinoma

Hidenori Machino, Syuzo Kaneko*, Masaaki Komatsu, Noriko Ikawa, Ken Asada, Ryuichiro Nakato, Kanto Shozu, Ai Dozen, Kenbun Sone, Hiroshi Yoshida, Tomoyasu Kato, Katsutoshi Oda, Yutaka Osuga, Tomoyuki Fujii, Gottfried von Keudell, Vassiliki Saloura, Ryuji Hamamoto*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

High-grade serous ovarian carcinoma (HGSOC) is the most aggressive gynecological malignancy, resulting in approximately 70% of ovarian cancer deaths. However, it is still unclear how genetic dysregulations and biological processes generate the malignant subtype of HGSOC. Here we show that expression levels of microtubule affinity-regulating kinase 3 (MARK3) are downregulated in HGSOC, and that its downregulation significantly correlates with poor prognosis in HGSOC patients. MARK3 overexpression suppresses cell proliferation and angiogenesis of ovarian cancer cells. The LKB1-MARK3 axis is activated by metabolic stress, which leads to the phosphorylation of CDC25B and CDC25C, followed by induction of G2/M phase arrest. RNA-seq and ATAC-seq analyses indicate that MARK3 attenuates cell cycle progression and angiogenesis partly through downregulation of AP-1 and Hippo signaling target genes. The synthetic lethal therapy using metabolic stress inducers may be a promising therapeutic choice to treat the LKB1-MARK3 axis-dysregulated HGSOCs.

Original languageEnglish
Article number39
JournalCommunications Biology
Volume5
Issue number1
DOIs
StatePublished - 2022/12

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'The metabolic stress-activated checkpoint LKB1-MARK3 axis acts as a tumor suppressor in high-grade serous ovarian carcinoma'. Together they form a unique fingerprint.

Cite this