Abstract
Orexin-A (hypocretin-1) and orexin-B (hypocretin-2) are hypothalamic neuropeptides that play key roles in the regulation of wakefulness, feeding, reward, autonomic functions and energy homeostasis. To control these functions indispensable for survival, orexin-expressing neurones integrate peripheral metabolic signals, interact with many types of neurones in the brain and modulate their activities via the activation of orexin-1 receptor or orexin-2 receptor. In addition, a new functional role of orexin is emerging in the regulation of insulin and leptin sensitivities responsible for whole-body glucose metabolism. Recent evidence indicates that orexin efficiently protects against the development of peripheral insulin resistance induced by ageing or high-fat feeding in mice. In particular, the orexin receptor-2 signalling appears to confer resistance to diet-induced obesity and insulin insensitivity by improving leptin sensitivity. In fact, the expression of orexin gene is known to be down-regulated by hyperglycaemia in the rodent model of diabetes, such as ob/ob and db/db mice. Moreover, the levels of orexin receptor-2 mRNA have been shown to decline in the brain of mice along with ageing. These suggest that hyperglycaemia due to insulin insensitivity during ageing or by habitual consumption of a high-fat diet leads to the reduction in orexin expression in the hypothalamus, thereby further exacerbating peripheral insulin resistance. Therefore, orexin receptor controlling hypothalamic insulin/leptin actions may be a new target for possible future treatment of hyperglycaemia in patients with type 2 diabetes.
Original language | English |
---|---|
Pages (from-to) | 335-348 |
Number of pages | 14 |
Journal | Acta Physiologica |
Volume | 198 |
Issue number | 3 |
DOIs | |
State | Published - 2010/03 |
Keywords
- Glucose metabolism
- Hypocretin
- Hypothalamus
- Insulin
- Leptin
- Orexin
ASJC Scopus subject areas
- Physiology