TY - JOUR
T1 - Neuritin mediates activity-dependent axonal branch formation in part via FGF signaling
AU - Shimada, Tadayuki
AU - Yoshida, Tomoyuki
AU - Yamagata, Kanato
N1 - Publisher Copyright:
© 2016 the authors.
PY - 2016/4/20
Y1 - 2016/4/20
N2 - Aberrant branch formation of granule cell axons (mossy fiber sprouting) is observed in the dentate gyrus of many patients with temporal lobe epilepsy and in animal models of epilepsy. However, the mechanisms underlying mossy fiber sprouting remain elusive. Based on the hypothesis that seizure-mediated gene expression induces abnormal mossy fiber growth, we screened activity-regulated genes in the hippocampus and found that neuritin, an extracellular protein anchored to the cell surface, was rapidly upregulated after electroconvulsive seizures. Overexpression of neuritin in the cultured rat granule cells promoted their axonal branching. Also, kainic acid-dependent axonal branching was abolished in the cultured granule cells from neuritin knock-out mice, suggesting that neuritin may be involved in activity-dependent axonal branching. Moreover, neuritin knock-out mice showed less-severe seizures in chemical kindling probably by reduced mossy fiber sprouting and/or increased seizure resistance. We found that inhibition of the fibroblast growth factor (FGF) receptor attenuated the neuritin-dependent axonal branching.FGFadministration also increased branching in granule neurons, whereas neuritin knock-out mice did not show FGF-dependent axonal branching. In addition, FGF and neuritin treatment enhanced the recruitment of FGF receptors to the cell surface. These findings suggest that neuritin and FGF cooperate in inducing mossy fiber sprouting through FGF signaling. Together, these results suggest that FGF and neuritin-mediated axonal branch induction are involved in the aggravation of epilepsy. Significance Statement This study reveals the molecular mechanism underlying mossy fiber sprouting. Mossy fiber sprouting is the aberrant axonal branching of granule neurons in the hippocampus, which is observed in patients with epilepsy. Excess amounts of neuritin, a protein upregulated by neural activity, promoted axonal branching in granule neurons.Adeficiency of neuritin suppressed mossy fiber sprouting and resulted in mitigation of seizure severity. Neuritin and fibroblast growth factor (FGF) cooperated in stimulating FGF signaling and enhancing axonal branching. Neuritin is necessary for FGF-mediated recruitment of FGF receptors to the cell surface. The recruitment of FGF receptors would promote axonal branching. The discovery of this new mechanism should contribute to the development of novel antiepileptic drugs to inhibit axonal branching via neuritin-FGF signaling.
AB - Aberrant branch formation of granule cell axons (mossy fiber sprouting) is observed in the dentate gyrus of many patients with temporal lobe epilepsy and in animal models of epilepsy. However, the mechanisms underlying mossy fiber sprouting remain elusive. Based on the hypothesis that seizure-mediated gene expression induces abnormal mossy fiber growth, we screened activity-regulated genes in the hippocampus and found that neuritin, an extracellular protein anchored to the cell surface, was rapidly upregulated after electroconvulsive seizures. Overexpression of neuritin in the cultured rat granule cells promoted their axonal branching. Also, kainic acid-dependent axonal branching was abolished in the cultured granule cells from neuritin knock-out mice, suggesting that neuritin may be involved in activity-dependent axonal branching. Moreover, neuritin knock-out mice showed less-severe seizures in chemical kindling probably by reduced mossy fiber sprouting and/or increased seizure resistance. We found that inhibition of the fibroblast growth factor (FGF) receptor attenuated the neuritin-dependent axonal branching.FGFadministration also increased branching in granule neurons, whereas neuritin knock-out mice did not show FGF-dependent axonal branching. In addition, FGF and neuritin treatment enhanced the recruitment of FGF receptors to the cell surface. These findings suggest that neuritin and FGF cooperate in inducing mossy fiber sprouting through FGF signaling. Together, these results suggest that FGF and neuritin-mediated axonal branch induction are involved in the aggravation of epilepsy. Significance Statement This study reveals the molecular mechanism underlying mossy fiber sprouting. Mossy fiber sprouting is the aberrant axonal branching of granule neurons in the hippocampus, which is observed in patients with epilepsy. Excess amounts of neuritin, a protein upregulated by neural activity, promoted axonal branching in granule neurons.Adeficiency of neuritin suppressed mossy fiber sprouting and resulted in mitigation of seizure severity. Neuritin and fibroblast growth factor (FGF) cooperated in stimulating FGF signaling and enhancing axonal branching. Neuritin is necessary for FGF-mediated recruitment of FGF receptors to the cell surface. The recruitment of FGF receptors would promote axonal branching. The discovery of this new mechanism should contribute to the development of novel antiepileptic drugs to inhibit axonal branching via neuritin-FGF signaling.
KW - Axon
KW - Epilepsy
KW - Mossy fiber
UR - http://www.scopus.com/inward/record.url?scp=84964054535&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.1715-15.2016
DO - 10.1523/JNEUROSCI.1715-15.2016
M3 - 学術論文
C2 - 27098696
AN - SCOPUS:84964054535
SN - 0270-6474
VL - 36
SP - 4534
EP - 4548
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 16
ER -