Abstract
This study investigates the dependence of the translational velocity of lipid-coated microbubbles in an ultrasound field on the viscosity of the surrounding Newtonian fluid. Plane burst waves with a center frequency of 7.34 MHz were used to uniformly drive microbubbles with a radius of 1.4 ± 0.3 μm (mean ± standard deviation) in a flow channel. Bubbles were detected using the Doppler method using pulse waves with a center frequency of 5.2 MHz, and the velocities of individual bubbles were analyzed by tracking them in consecutive images. Examinations were conducted at various viscosities from 1 to 3 mPa∙s. The experimentally determined velocity-viscosity relationship qualitatively agreed with numerical simulations. This was written as a power-law dependence and used as a calibration curve to evaluate the local viscosity coefficient for the trajectories of individual bubbles. We succeeded in demonstrating viscosity imaging by multiplying the obtained viscosity coefficient with the bubble trajectories, convoluted with the point spread function of ultrasound imaging.
Original language | English |
---|---|
Article number | 03SP73 |
Journal | Japanese Journal of Applied Physics |
Volume | 64 |
Issue number | 3 |
DOIs | |
State | Published - 2025/03/01 |
Keywords
- acoustic radiation force
- doppler effect
- microbubble
- viscosity
ASJC Scopus subject areas
- General Engineering
- General Physics and Astronomy