Abstract
Benzalacetone synthase, from the medicinal plant Rheum palmatum (RpBAS), is a plant-specific chalcone synthase (CHS) superfamily of type III polyketide synthase (PKS). RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.
Original language | English |
---|---|
Article number | 57 |
Journal | Frontiers in Plant Science |
Volume | 3 |
Issue number | MAR |
DOIs | |
State | Published - 2012/03/21 |
Keywords
- Benzalacetone synthase
- Biosynthesis
- Enzyme
- Polyketide synthase
- Polyphenol
ASJC Scopus subject areas
- Plant Science