Abstract
A phosphine sulfide Pd(II) complex, [Pd(p2S2)2](BF4)2 (1) (p2S2 = 1,2-bis(diphenylphosphino)ethane disulfide), was synthesized and characterized by an X-ray crystal structure analysis and 31P NMR spectroscopy. The p2S2 ligand exchange rate of 1 with free p2S2 in chloroform was revealed to be comparable to the general solvent exchange rate on Pd(II). The catalytic activity of 1 was evaluated by carrying out the Heck reaction. The diminishing of the induction period and acceleration of the reaction were observed for 1 by comparing the phosphine Pd(II) complexes with a leaving chloro ligand, [PdCl(p3)]Cl (p3 = bis[2-(diphenylphosphino)ethyl]phenylphosphine) and [PdCl(pp3)]Cl (pp3 = tris[2-(diphenylphosphino)ethyl]phosphine), and the catalytic activity was comparable to that of the phosphine Pd(0) complex, [Pd(PPh3)4]. Such a high catalytic activity of 1 is attributed to the π-accepting ability of the phosphine sulfide S atom which stabilizes the catalytically active Pd(0) species electronically and weak σ-donation of the S atom which does not block the formation and a subsequent reaction of the Pd(II) substrate adduct in the catalytic cycle.
Original language | English |
---|---|
Pages (from-to) | 2809-2813 |
Number of pages | 5 |
Journal | Inorganica Chimica Acta |
Volume | 360 |
Issue number | 8 |
DOIs | |
State | Published - 2007/05/30 |
Keywords
- C-C coupling reaction
- Phosphine sulfide
- π-accepting ability
ASJC Scopus subject areas
- Physical and Theoretical Chemistry
- Inorganic Chemistry
- Materials Chemistry