抄録
The synthesis of high value-added 2,5-dimethylfuran (2,5-DMF) from catalytic hydrogenolysis of 5-hydroxymethylfurfural (5-HMF) is one of significant reactions for biomass utilization, but it still confronts big challenges for the development of base metal catalysts with high performance. In this work, we fabricated series of ZrO2 modified Co nanocatalysts derived from layered double hydroxides (LDHs), wherein metastable state CoO species can be stablished via sacrifice of a portion of surface vacancies, for selective synthesis of 2,5-DMF via 5-HMF hydrogenolysis. The optimal catalyst 2ZrO2-Co/Al2O3 shows great catalytic performance and good stability, which gives a high 2,5-DMF yield of up to 97.3 %. The addition of ZrO2 stablishes the metastable state CoO species, which cooperate with suitable oxygen vacancies and enhance the adsorption of 5-HMF and heterolytic dissociation of H2 to generate highly active Hδ− species, consequently achieving excellent catalytic performance for hydrogenolysis of 5-HMF to 2,5-DMF.
本文言語 | 英語 |
---|---|
論文番号 | 114765 |
ジャーナル | Molecular Catalysis |
巻 | 572 |
DOI | |
出版ステータス | 出版済み - 2025/02/01 |
ASJC Scopus 主題領域
- 触媒
- プロセス化学およびプロセス工学
- 物理化学および理論化学