Unsupervised decomposition of natural monkey behavior into a sequence of motion motifs

Koki Mimura*, Jumpei Matsumoto, Daichi Mochihashi, Tomoaki Nakamura, Hisao Nishijo, Makoto Higuchi, Toshiyuki Hirabayashi, Takafumi Minamimoto*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

3 被引用数 (Scopus)

抄録

Nonhuman primates (NHPs) exhibit complex and diverse behavior that typifies advanced cognitive function and social communication, but quantitative and systematical measure of this natural nonverbal processing has been a technical challenge. Specifically, a method is required to automatically segment time series of behavior into elemental motion motifs, much like finding meaningful words in character strings. Here, we propose a solution called SyntacticMotionParser (SMP), a general-purpose unsupervised behavior parsing algorithm using a nonparametric Bayesian model. Using three-dimensional posture-tracking data from NHPs, SMP automatically outputs an optimized sequence of latent motion motifs classified into the most likely number of states. When applied to behavioral datasets from common marmosets and rhesus monkeys, SMP outperformed conventional posture-clustering models and detected a set of behavioral ethograms from publicly available data. SMP also quantified and visualized the behavioral effects of chemogenetic neural manipulations. SMP thus has the potential to dramatically improve our understanding of natural NHP behavior in a variety of contexts.

本文言語英語
論文番号1080
ジャーナルCommunications Biology
7
1
DOI
出版ステータス出版済み - 2024/12

ASJC Scopus 主題領域

  • 医学(その他)
  • 生化学、遺伝学、分子生物学一般
  • 農業および生物科学一般

フィンガープリント

「Unsupervised decomposition of natural monkey behavior into a sequence of motion motifs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル