Training elman neural network for dynamic system identification using an adaptive local search algorithm

Zhiqiang Zhang*, Zheng Tang, Shangce Gao, Gang Yang

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

4 被引用数 (Scopus)

抄録

Recurrent neural networks, especially for Elman Neural Network, have attracted the attention of researchers in the fields of Dynamic System Identification (DSI) since they took the m,em,ory unit through the context delay. In this paper, we propose an Adaptive Local Search (ALS) algorithm, to train Elman Neural Network (ENN) for Dynamic Systems Identification (DSI) from a new angle instead of traditional Back Propagation (BP) based, gradient descent technique. Experimental results show that the proposed algorithm has greatly effective performances in the identification of linear and nonlinear dynamic systems in comparison with BP based, algorithms. The results also demonstrate that the proposed, algorithm, is an alternative means of training ENN when the gradient-based methods fail to find an acceptable solution. So the proposed algorithm can be regarded as a new tool or identification approach to identify dynamical systems for the auto-control systems.

本文言語英語
ページ(範囲)2233-2243
ページ数11
ジャーナルInternational Journal of Innovative Computing, Information and Control
6
5
出版ステータス出版済み - 2010/05

ASJC Scopus 主題領域

  • ソフトウェア
  • 理論的コンピュータサイエンス
  • 情報システム
  • 計算理論と計算数学

フィンガープリント

「Training elman neural network for dynamic system identification using an adaptive local search algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル