Time and frequency domain deconvolution for cross-sectional cultured cell observation using an acoustic impedance microscope

Edo Bagus Prastika*, Taichi Shintani, Tomohiro Kawashima, Yoshinobu Murakami, Naohiro Hozumi, Thomas Tiong Kwong Soon, Sachiko Yoshida, Ryo Nagaoka, Kazuto Kobayashi

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

12 被引用数 (Scopus)

抄録

Herein, we propose a method to estimate the reflection coefficient of the ultrasonic wave transmitted onto an object and to display this with acoustic impedance distribution. The observation targets were glial cells, which have a rigid cytoskeleton and spread out well on a culture substrate. A reflection coefficient derived only from the cells was then obtained using a deconvolution process. In the conventional method, the deconvolution process that was performed only in the frequency domain would cause an error in the reconstructed signal, and it formed an artifact when the result was converted into the acoustic impedance image. To solve this problem, two types of deconvolution techniques were applied in either the full frequency or time–frequency domain. The results of both methods were then compared. Since the characteristic acoustic impedance is a physical property substantially equivalent to the bulk modulus, it can be considered that the internal elastic parameter is thus estimated. An analysis of the nucleus based on its position in the acoustic impedance image was then performed. The results indicated that the proposed time–frequency domain deconvolution method is able to maintain the structure of the cell, while the cell itself is free from unwanted artifacts. The nucleus was also estimated to be located toward the center of the cell, with lower acoustic impedance value than the cytoskeleton. The results of this study could contribute to establishing a method for monitoring the internal condition of cultured cells in regenerative medicine and drug discovery.

本文言語英語
論文番号106601
ジャーナルUltrasonics
119
DOI
出版ステータス出版済み - 2022/02

ASJC Scopus 主題領域

  • 音響学および超音波学

フィンガープリント

「Time and frequency domain deconvolution for cross-sectional cultured cell observation using an acoustic impedance microscope」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル