The wave equation with a discontinuous coefficient depending on time only: Generalized solutions and propagation of singularities

Hideo Geguchi*, Günther Hörmann, Michael Oberguggenberger

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録査読

3 被引用数 (Scopus)

抄録

This paper is devoted to the investigation of propagation of singularities in hyperbolic equations with non-smooth coefficients, using the Colombeau theory of generalized functions. As a model problem, we study the Cauchy problem for the one-dimensional wave equation with a discontinuous coefficient depending on time. After demonstrating the existence and uniqueness of generalized solutions in the sense of Colombeau to the problem, we investigate the phenomenon of propagation of singularities, arising from delta function initial data, for the case of a piecewise constant coefficient. We also provide an analysis of the interplay between singularity strength and propagation effects. Finally, we show that in case the initial data are distributions, the Colombeau solution to the model problem is associated with the piecewise distributional solution of the corresponding transmission problem.

本文言語英語
ホスト出版物のタイトルPseudo-Differential Operators, Generalized Functions and Asymptotics
出版社Springer Basel
ページ323-339
ページ数17
ISBN(電子版)9783034805858
ISBN(印刷版)9783034805841
DOI
出版ステータス出版済み - 2013/01/01

ASJC Scopus 主題領域

  • 数学一般

フィンガープリント

「The wave equation with a discontinuous coefficient depending on time only: Generalized solutions and propagation of singularities」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル