The Effect of Small Additions of Fe and Heavy Deformation on the Precipitation in an Al–1.1Mg–0.5Cu–0.3Si At. Pct Alloy

Elisabeth Thronsen*, Hanne Mørkeseth, Calin D. Marioara, Kazuhiro Minakuchi, Tetsuya Katsumi, Knut Marthinsen, Kenji Matsuda, Randi Holmestad

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

5 被引用数 (Scopus)

抄録

The effect of 0.03 and 0.08 at. pct Fe additions on the formation of secondary phases in an Al–1.1Mg–0.5Cu–0.3Si at. pct alloy was investigated. Following solution heat treatment and natural aging, the alloys were analyzed in an undeformed, artificially aged condition and in a two-step deformed condition consisting of 80 pct deformation, artificial aging, 50 pct deformation and a final, short artificial aging. Using electron microscopy, it was found that both alloys contained similar amounts of primary Mg2Si particles, while the higher Fe level alloy produced roughly twice the number density and volume fraction of primary bcc α-AlFeSi particles. Lower volume fractions of hardening precipitates were measured in the high Fe level alloy, as attributed to the lower amount of Si available for precipitation. Using atomic resolution scanning transmission electron microscopy, a mix of L phases and structural elements of GPB zones was found in the undeformed conditions. In the deformed conditions, scanning precession electron diffraction revealed that the precipitates were nucleated both on and between deformation induced defects. The addition of Fe affected the relative ratio of these precipitates. Hardness measurements of conditions combining deformation and artificial aging were performed to investigate the hardening mechanisms at each processing step. Graphical Abstract: [Figure not available: see fulltext.].

本文言語英語
ページ(範囲)3296-3310
ページ数15
ジャーナルMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
53
9
DOI
出版ステータス出版済み - 2022/09

ASJC Scopus 主題領域

  • 凝縮系物理学
  • 材料力学
  • 金属および合金

フィンガープリント

「The Effect of Small Additions of Fe and Heavy Deformation on the Precipitation in an Al–1.1Mg–0.5Cu–0.3Si At. Pct Alloy」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル