The application and result analysis comparison of based on MLP neural network and econometric models in logistics demand forecasting

Yibo Du*, Jin Zhang, Zheng Tang, Yiming Qi

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

1 被引用数 (Scopus)

抄録

Logistics demand forecasting is the key step in logistics system planning. It is not only providing the important data support to design and estimation step, but also provide science basis to providing logistics supply, site-selection and scale ascertain of logistics nodes. Based on MLP artificial neural network model is wildly applied in logistics demand forecasting, through the application and result analysis based on MLP neural network model in logistics demand forecasting. It is contrast to the application of Econometric forecasting model from the side of another model to push out the excellence of based on MLP neural network model applied in logistics demand forecasting.

本文言語英語
ホスト出版物のタイトルICLEM 2010
ホスト出版物のサブタイトルLogistics for Sustained Economic Development - Infrastructure, Information, Integration - Proceedings of the 2010 International Conference of Logistics Engineering and Management
ページ2771-2777
ページ数7
DOI
出版ステータス出版済み - 2010
イベント2010 International Conference of Logistics Engineering and Management: Logistics for Sustained Economic Development - Infrastructure, Information, Integration, ICLEM 2010 - Chengdu, 中国
継続期間: 2010/10/082010/10/10

出版物シリーズ

名前ICLEM 2010: Logistics for Sustained Economic Development - Infrastructure, Information, Integration - Proceedings of the 2010 International Conference of Logistics Engineering and Management
387

学会

学会2010 International Conference of Logistics Engineering and Management: Logistics for Sustained Economic Development - Infrastructure, Information, Integration, ICLEM 2010
国/地域中国
CityChengdu
Period2010/10/082010/10/10

ASJC Scopus 主題領域

  • 管理情報システム
  • 情報システムおよび情報管理
  • 経営科学およびオペレーションズ リサーチ

フィンガープリント

「The application and result analysis comparison of based on MLP neural network and econometric models in logistics demand forecasting」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル