Swarm Exploration Mechanism-Based Distributed Water Wave Optimization

Haotian Li, Haichuan Yang, Baohang Zhang, Han Zhang, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

2 被引用数 (Scopus)

抄録

Using sparrow search hunting mechanism to improve water wave algorithm (WWOSSA), which combines the water wave optimization (WWO) algorithm and the sparrow search algorithm (SSA), has good optimization ability and fast convergence speed. However, it still suffers from insufficient exploration ability and is easy to fall into local optimum. In this study, we propose a new algorithm for distributed population structure, called swarm exploration mechanism-based distributed water wave optimization (DWSA). In DWSA, an information exchange component and an optimal individual evolution component are designed to improve information exchange between individuals. This multi-part information interaction and distributed population structure algorithm can help the population algorithm to establish a balance between exploitation and exploration more effectively. We contrast DWSA with the original algorithms WWOSSA and other meta-heuristics in order to show the effectiveness of DWSA. The test set consists of 22 actual optimization issues from the CEC2011 set and 29 benchmark functions from the CEC2017 benchmark functions. In addition, an experimental comparison of the parameter values introduced in DWSA is included. According to experimental results, the proposed DWSA performs substantially better than its competitors. Assessments of the population diversity and landscape search trajectory also confirmed DWSA’s outstanding convergence.

本文言語英語
論文番号76
ジャーナルInternational Journal of Computational Intelligence Systems
16
1
DOI
出版ステータス出版済み - 2023/12

ASJC Scopus 主題領域

  • コンピュータサイエンス一般
  • 計算数学

フィンガープリント

「Swarm Exploration Mechanism-Based Distributed Water Wave Optimization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル