Student-Teacher Anomaly Detection Considering Knowledge Consistency between Layer Groups

Kohei Nakazawa*, Katsuya Hotta, Jun Yu, Chao Zhang

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

2 被引用数 (Scopus)

抄録

Student-teacher networks have been widely used for anomaly detection, which is often addressed as a one-class classification task. The mainstream idea is to calculate the loss of multiple feature maps between the student network and the teacher network independently without considering their relevance to detect anomalies. In this paper, we introduce a knowledge consistency loss into the student-teacher framework for further improving the performance based on the observation that anomaly scores obtained between adjacent layer groups should be spatially consistent. Evaluational experiments on a publicly available benchmark confirmed that our proposal can improve pixel-level anomaly detection when the anomaly score map is calculated from the feature map in the highest resolution.

本文言語英語
ホスト出版物のタイトルGCCE 2022 - 2022 IEEE 11th Global Conference on Consumer Electronics
出版社Institute of Electrical and Electronics Engineers Inc.
ページ381-382
ページ数2
ISBN(電子版)9781665492324
DOI
出版ステータス出版済み - 2022
イベント11th IEEE Global Conference on Consumer Electronics, GCCE 2022 - Osaka, 日本
継続期間: 2022/10/182022/10/21

出版物シリーズ

名前GCCE 2022 - 2022 IEEE 11th Global Conference on Consumer Electronics

学会

学会11th IEEE Global Conference on Consumer Electronics, GCCE 2022
国/地域日本
CityOsaka
Period2022/10/182022/10/21

ASJC Scopus 主題領域

  • 信号処理
  • 情報システムおよび情報管理
  • 電子工学および電気工学
  • メディア記述
  • 器械工学
  • 社会心理学

フィンガープリント

「Student-Teacher Anomaly Detection Considering Knowledge Consistency between Layer Groups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル