Stochastic competitive hopfield network and its application to maximum clique problem

Jiahai Wang*, Zheng Tang, Qiping Cao

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

2 被引用数 (Scopus)

抄録

In this paper, introducing a stochastic hill-climbing dynamics into an optimal competitive Hopfield network model (OCHOM), we propose a new algorithm that permits temporary energy increases, which helps the OCHOM escape from local minima. In graph theory, a clique is a completely connected subgraph and the maximum clique problem (MCF) is to find a clique of maximum size of a graph. The MCP is a classic optimization problem in computer science and in graph theory with many real-world applications, and is also known to be NP-complete. Recently. Galán-Marín et al. proposed the OCHOM for the MCP. It can guarantee convergence to a global/local minimum of energy function and performs better than other competitive neural approaches. However, the OCHOM has no mechanism to escape from local minima. The proposed algorithm introduces stochastic hill-climbing dynamics which helps the OCHOM escape from local minima, and it is applied to the MCP. A number of instances have been simulated to verify the proposed algorithm.

本文言語英語
ページ(範囲)2790-2798
ページ数9
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E87-A
10
出版ステータス出版済み - 2004/10

ASJC Scopus 主題領域

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Stochastic competitive hopfield network and its application to maximum clique problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル