Speckle reduction of medical ultrasound images using deep learning with fully convolutional network

研究成果: ジャーナルへの寄稿学術論文査読

12 被引用数 (Scopus)

抄録

Smoothing filters are frequently used for speckle reduction of medical ultrasound images. However, such filters may cause loss of the detailed structures of tissues in terms of image contrast. To improve image contrast in speckle reduction, we investigated a filter for medical ultrasound images using deep learning with a fully convolutional network, which was trained with pairs of input and target data generated by computer simulation. The proposed method achieved higher contrast-to-noise ratio and contrast values than the conventional methods with about 300 times faster processing speed than the NL-means filter.

本文言語英語
論文番号SKKE06
ジャーナルJapanese Journal of Applied Physics
59
DOI
出版ステータス出版済み - 2020/07/01

ASJC Scopus 主題領域

  • 工学一般
  • 物理学および天文学一般

フィンガープリント

「Speckle reduction of medical ultrasound images using deep learning with fully convolutional network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル