Solving multitrip pickup and delivery problem with time windows and manpower planning using multiobjective algorithms

Jiahai Wang, Yuyan Sun, Zizhen Zhang*, Shangce Gao

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

74 被引用数 (Scopus)

抄録

The multitrip pickup and delivery problem with time windows and manpower planning (MTPDPTW-MP) determines a set of ambulance routes and finds staff assignment for a hospital. It involves different stakeholders with diverse interests and objectives. This study firstly introduces a multiobjective MTPDPTW-MP (MO-MTPDPTWMP) with three objectives to better describe the real-world scenario. A multiobjective iterated local search algorithm with adaptive neighborhood selection (MOILS-ANS) is proposed to solve the problem. MOILS-ANS can generate a diverse set of alternative solutions for decision makers to meet their requirements. To better explore the search space, problem-specific neighborhood structures and an adaptive neighborhood selection strategy are carefully designed in MOILS-ANS. Experimental results show that the proposed MOILS-ANS significantly outperforms the other two multiobjective algorithms. Besides, the nature of objective functions and the properties of the problem are analyzed. Finally, the proposed MOILS-ANS is compared with the previous single-objective algorithm and the benefits of multiobjective optimization are discussed.

本文言語英語
論文番号9106875
ページ(範囲)1134-1153
ページ数20
ジャーナルIEEE/CAA Journal of Automatica Sinica
7
4
DOI
出版ステータス出版済み - 2020/07

ASJC Scopus 主題領域

  • 制御およびシステム工学
  • 情報システム
  • 人工知能

フィンガープリント

「Solving multitrip pickup and delivery problem with time windows and manpower planning using multiobjective algorithms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル