SHX: Search history driven crossover for real-coded genetic algorithm

Takumi Nakane, Xuequan Lu, Chao Zhang

研究成果: 書籍の章/レポート/会議録会議への寄与査読

4 被引用数 (Scopus)

抄録

In evolutionary algorithms, genetic operators iteratively generate new offspring which constitute a potentially valuable set of search history. To boost the performance of crossover in real-coded genetic algorithm (RCGA), in this paper we propose to exploit the search history cached so far in an online style during the iteration. Specifically, survivor individuals over past few generations are collected and stored in the archive to form the search history. We introduce a simple yet effective crossover model driven by the search history (abbreviated as SHX). In particular, the search history is clustered and each cluster is assigned a score for SHX. In essence, the proposed SHX is a data-driven method which exploits the search history to perform offspring selection after the offspring generation. Since no additional fitness evaluations are needed, SHX is favorable for the tasks with limited budget or expensive fitness evaluations. We experimentally verify the effectiveness of SHX over 4 benchmark functions. Quantitative results show that our SHX can significantly enhance the performance of RCGA, in terms of accuracy.

本文言語英語
ホスト出版物のタイトルGECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
出版社Association for Computing Machinery, Inc
ページ217-218
ページ数2
ISBN(電子版)9781450371278
DOI
出版ステータス出版済み - 2020/07/08
イベント2020 Genetic and Evolutionary Computation Conference, GECCO 2020 - Cancun, メキシコ
継続期間: 2020/07/082020/07/12

出版物シリーズ

名前GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion

学会

学会2020 Genetic and Evolutionary Computation Conference, GECCO 2020
国/地域メキシコ
CityCancun
Period2020/07/082020/07/12

ASJC Scopus 主題領域

  • 計算数学

フィンガープリント

「SHX: Search history driven crossover for real-coded genetic algorithm」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル