TY - JOUR
T1 - SH2-containing inositol phosphatase 2 negatively regulates insulin-induced glycogen synthesis in L6 myotubes
AU - Sasaoka, T.
AU - Hori, H.
AU - Wada, T.
AU - Ishiki, M.
AU - Haruta, T.
AU - Ishihara, H.
AU - Kobayashi, M.
N1 - Funding Information:
Acknowledgements. This work was supported in part by the Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (to T. S. ). We thank Dr. A. Klip at the Hospital for Sick Children (Toronto, Canada) for providing L6 cells and critical comments in the preparation of this manuscript.
PY - 2001
Y1 - 2001
N2 - Aims/hypothesis. PI(3,4,5)P3 produced by PI3-kinase seems to be a key mediator for insulin's metabolic actions. We have recently cloned rat SHIP2 cDNA which is abundantly expressed in target tissues of insulin. Here, we clarify the role of SHIP2 possessing 5′-phosphatase activity toward PI(3,4,5)P3 in insulin signalling in the skeletal muscle. Methods. The role of SHIP2 in insulin-induced glycogen synthesis was studied by expressing wild-type (WT)-SHIP2 and a 5′-phosphatase defective (ΔIP)-SHIP2 into L6 myotubes by means of adenovirus mediated gene transfer. Results. The early events of insulin signalling including tyrosine phosphorylation of the insulin receptor and IRS-1, IRS-1 association with the p85 subunit, and PI3-kinase activity were not affected by expression of WT- and ΔIP-SHIP2. Although PI(3,4,5)P3 and PI(3,4)P2 are known to possibly activate a downstream molecule of PI3-kinase Akt in vitro, overexpression of WT-SHIP2 inhibited insulin-induced phosphorylation and activation of Akt. Conversely, Akt activity was increased by expression of ΔIP-SHIP2. GSK3β located downstream of Akt is an important molecule to further transmit insulin signal for glycogen synthesis in skeletal muscles. In accordance with the results of Akt, insulin-induced phosphorylation and inactivation of GSK3β, subsequent activation of glycogen synthase and glycogen synthesis were decreased by expression of WT-SHIP2, whereas these events were increased by expression of ΔIP-SHIP2. Conclusion/interpretation. Our results indicate that SHIP2 plays a negative regulatory role via the 5′-phosphatase activity in insulin signalling, and that PI(3,4,5)P3 rather than PI(3,4)P2 is important for in vivo regulation of insulin-induced Akt activation leading to glycogen synthesis in L6 myotubes.
AB - Aims/hypothesis. PI(3,4,5)P3 produced by PI3-kinase seems to be a key mediator for insulin's metabolic actions. We have recently cloned rat SHIP2 cDNA which is abundantly expressed in target tissues of insulin. Here, we clarify the role of SHIP2 possessing 5′-phosphatase activity toward PI(3,4,5)P3 in insulin signalling in the skeletal muscle. Methods. The role of SHIP2 in insulin-induced glycogen synthesis was studied by expressing wild-type (WT)-SHIP2 and a 5′-phosphatase defective (ΔIP)-SHIP2 into L6 myotubes by means of adenovirus mediated gene transfer. Results. The early events of insulin signalling including tyrosine phosphorylation of the insulin receptor and IRS-1, IRS-1 association with the p85 subunit, and PI3-kinase activity were not affected by expression of WT- and ΔIP-SHIP2. Although PI(3,4,5)P3 and PI(3,4)P2 are known to possibly activate a downstream molecule of PI3-kinase Akt in vitro, overexpression of WT-SHIP2 inhibited insulin-induced phosphorylation and activation of Akt. Conversely, Akt activity was increased by expression of ΔIP-SHIP2. GSK3β located downstream of Akt is an important molecule to further transmit insulin signal for glycogen synthesis in skeletal muscles. In accordance with the results of Akt, insulin-induced phosphorylation and inactivation of GSK3β, subsequent activation of glycogen synthase and glycogen synthesis were decreased by expression of WT-SHIP2, whereas these events were increased by expression of ΔIP-SHIP2. Conclusion/interpretation. Our results indicate that SHIP2 plays a negative regulatory role via the 5′-phosphatase activity in insulin signalling, and that PI(3,4,5)P3 rather than PI(3,4)P2 is important for in vivo regulation of insulin-induced Akt activation leading to glycogen synthesis in L6 myotubes.
KW - 5′-phosphatase
KW - Akt
KW - Glycogen synthesis
KW - Insulin
KW - PI3-kinase
KW - SHIP2
UR - http://www.scopus.com/inward/record.url?scp=0034775501&partnerID=8YFLogxK
U2 - 10.1007/s001250100645
DO - 10.1007/s001250100645
M3 - 学術論文
C2 - 11692174
AN - SCOPUS:0034775501
SN - 0012-186X
VL - 44
SP - 1258
EP - 1267
JO - Diabetologia
JF - Diabetologia
IS - 10
ER -