(+)-Sesamin-oxidising CYP92B14 shapes specialised lignan metabolism in sesame

Erisa Harada, Jun Murata, Eiichiro Ono, Hiromi Toyonaga, Akira Shiraishi, Kosuke Hideshima, Masayuki P. Yamamoto*, Manabu Horikawa*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

13 被引用数 (Scopus)

抄録

Sesamum spp. (sesame) are known to accumulate a variety of lignans in a lineage-specific manner. In cultivated sesame (Sesamum indicum), (+)-sesamin, (+)-sesamolin and (+)-sesaminol triglucoside are the three major lignans found richly in the seeds. A recent study demonstrated that SiCYP92B14 is a pivotal enzyme that allocates the substrate (+)-sesamin to two products, (+)-sesamolin and (+)-sesaminol, through multiple reaction schemes including oxidative rearrangement of α-oxy-substituted aryl groups (ORA). In contrast, it remains unclear whether (+)-sesamin in wild sesame undergoes oxidation reactions as in S. indicum and how, if at all, the ratio of the co-products is tailored at the molecular level. Here, we functionally characterised SrCYP92B14 as a SiCYP92B14 orthologue from a wild sesame, Sesamum radiatum, in which we revealed accumulation of the (+)-sesaminol derivatives (+)-sesangolin and its novel structural isomer (+)-7´-episesantalin. Intriguingly, SrCYP92B14 predominantly produced (+)-sesaminol either through ORA or direct oxidation on the aromatic ring, while a relatively low but detectable level of (+)-sesamolin was produced. Amino acid substitution analysis suggested that residues in the putative distal helix and the neighbouring heme propionate of CYP92B14 affect the ratios of its co-products. These data collectively show that the bimodal oxidation mechanism of (+)-sesamin might be widespread across Sesamum spp., and that CYP92B14 is likely to be a key enzyme in shaping the ratio of (+)-sesaminol- and (+)-sesamolin-derived lignans from the biochemical and evolutionary perspectives.

本文言語英語
ページ(範囲)1117-1128
ページ数12
ジャーナルPlant Journal
104
4
DOI
出版ステータス出版済み - 2020/11

ASJC Scopus 主題領域

  • 遺伝学
  • 植物科学
  • 細胞生物学

フィンガープリント

「(+)-Sesamin-oxidising CYP92B14 shapes specialised lignan metabolism in sesame」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル