Screening operators and parabolic inductions for affine W-algebras

研究成果: ジャーナルへの寄稿学術論文査読

8 被引用数 (Scopus)

抄録

(Affine) W-algebras are a family of vertex algebras defined by the generalized Drinfeld-Sokolov reductions associated with a finite-dimensional reductive Lie algebra g over C, a nilpotent element f in [g,g], a good grading Γ and a symmetric invariant bilinear form κ on g. We introduce free field realizations of W-algebras by using Wakimoto representations of affine Lie algebras, where W-algebras are described as the intersections of kernels of screening operators. We call these Wakimoto free fields realizations of W-algebras. As applications, under certain conditions that are valid in all cases of type A, we construct parabolic inductions for W-algebras, which we expect to induce the parabolic inductions of finite W-algebras defined by Premet and Losev. In type A, we show that our parabolic inductions are a chiralization of the coproducts for finite W-algebras defined by Brundan-Kleshchev. In type BCD, we are able to obtain some generalizations of the coproducts in some special cases. This paper also contains an appendix by Shigenori Nakatsuka on the compatibility of screening operators with Miura maps.

本文言語英語
論文番号107179
ジャーナルAdvances in Mathematics
369
DOI
出版ステータス出版済み - 2020/08/05

ASJC Scopus 主題領域

  • 数学一般

フィンガープリント

「Screening operators and parabolic inductions for affine W-algebras」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル