抄録
Composite oxide anodes have recently attracted great attention as alternative materials for solid oxide fuel cell anodes because of their potential to overcome the serious performance deterioration associated with the traditional Ni-based cermet. In particular, oxide anodes show a greater tolerance to coke and reoxidation than existing Ni-based cermets. In this study, the anodic performance of a (Ce,Mn,Fe)O2/(La,Sr) (Fe,Mn)O3 composite oxide modified with additional amounts of catalytically active RuO2 nanoparticles was investigated. Heat treatment resulted in highly dispersed RuO2 particles (ca. 10 nm). Anodes containing 10 wt% added RuO2 exhibited fairly high maximum power densities of 0.3 and 1.5 W cm-2 in H2 and C3H8, respectively, at 800 °C. The cells showed stable power density and negligible carbon formation even after 50 h of operation at 1 A cm-2. The increased power density was assigned to decreased anodic overpotential and internal resistance losses because RuO2 nanoparticles contribute to the increase in electrical conductivity.
本文言語 | 英語 |
---|---|
ページ(範囲) | 138-145 |
ページ数 | 8 |
ジャーナル | Journal of Power Sources |
巻 | 289 |
DOI | |
出版ステータス | 出版済み - 2015/09/01 |
ASJC Scopus 主題領域
- 再生可能エネルギー、持続可能性、環境
- エネルギー工学および電力技術
- 物理化学および理論化学
- 電子工学および電気工学