Robust non-parametric template matching with local rigidity constraints

Chao Zhang, Haitian Sun, Takuya Akashi

研究成果: ジャーナルへの寄稿学術論文査読

1 被引用数 (Scopus)

抄録

In this paper, we address the problem of non-parametric template matching which does not assume any specific deformation models. In real-world matching scenarios, deformation between a template and a matching result usually appears to be non-rigid and non-linear. We propose a novel approach called local rigidity constraints (LRC). LRC is built based on an assumption that the local rigidity, which is referred to as structural persistence between image patches, can help the algorithm to achieve better performance. A spatial relation test is proposed to weight the rigidity between two image patches. When estimating visual similarity under an unconstrained environment, high-level similarity (e.g. with complex geometry transformations) can then be estimated by investigating the number of LRC. In the searching step, exhaustive matching is possible because of the simplicity of the algorithm. Global maximum is given out as the final matching result. To evaluate our method, we carry out a comprehensive comparison on a publicly available benchmark and show that our method can outperform the state-of-the-art method.

本文言語英語
ページ(範囲)2332-2340
ページ数9
ジャーナルIEICE Transactions on Information and Systems
E99D
9
DOI
出版ステータス出版済み - 2016/09

ASJC Scopus 主題領域

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「Robust non-parametric template matching with local rigidity constraints」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル