Reduction by stages for finite W-algebras

Naoki Genra, Thibault Juillard*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

2 被引用数 (Scopus)

抄録

Let g be a simple Lie algebra: its dual space g is a Poisson variety. It is well known that for each nilpotent element f in g, it is possible to construct a new Poisson structure by Hamiltonian reduction which is isomorphic to some subvariety of g, the Slodowy slice Sf. Given two nilpotent elements f1 and f2 with some compatibility assumptions, we prove Hamiltonian reduction by stages: the slice Sf2 is the Hamiltonian reduction of the slice Sf1. We also state an analogous result in the setting of finite W-algebras, which are quantizations of Slodowy slices. These results were conjectured by Morgan in his Ph.D. thesis. As corollary in type A, we prove that any hook-type W-algebra can be obtained as Hamiltonian reduction from any other hook-type one. As an application, we establish a generalization of the Skryabin equivalence. Finally, we make some conjectures in the context of affine W-algebras.

本文言語英語
論文番号15
ジャーナルMathematische Zeitschrift
308
1
DOI
出版ステータス出版済み - 2024/09

ASJC Scopus 主題領域

  • 数学一般

フィンガープリント

「Reduction by stages for finite W-algebras」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル