Quaternion Dendritic Neuron Model for Multivariate Financial Time Series Prediction

Qianrui Yu, Zihang Zhang, Ziqian Wang, Haotian Li, Zhenyu Lei*, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

抄録

In prediction tasks, the single dendritic neuron models (DNMs) have achieved good results due to their inherent biological dendrite-like nonlinear calculation capabilities. Meanwhile, quaternion neural networks consisting of multi-layers of McCulloch-Pitts neurons have achieved remarkable achievements in spatial rotation, image processing, and multidimensional prediction. However, a single DNM has never been extended to quaternion domains and has not been applied to multivariate prediction tasks. In this work, we first generalize the real-valued DNM to the quaternion field. The performance of quaternion DNM (QDNM) is evaluated through several real-world multivariate financial time series prediction tasks. Also, the form of the forward phase of the neuron structure is analyzed comparatively. Experimental results demonstrate that the proposed QDNM achieves better results on diverse tasks than existing classical real-valued models and quaternion networks.

本文言語英語
ジャーナルIEEE Transactions on Emerging Topics in Computational Intelligence
DOI
出版ステータス受理済み/印刷中 - 2024

ASJC Scopus 主題領域

  • コンピュータ サイエンスの応用
  • 制御と最適化
  • 計算数学
  • 人工知能

フィンガープリント

「Quaternion Dendritic Neuron Model for Multivariate Financial Time Series Prediction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル