Quantum key distribution with simply characterized light sources

Akihiro Mizutani*, Toshihiko Sasaki, Yuki Takeuchi, Kiyoshi Tamaki, Masato Koashi

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

9 被引用数 (Scopus)

抄録

To guarantee the security of quantum key distribution (QKD), security proofs of QKD protocols have assumptions on the devices. Commonly used assumptions are, for example, each random bit information chosen by a sender to be precisely encoded on an optical emitted pulse and the photon-number probability distribution of the pulse to be exactly known. These typical assumptions imposed on light sources such as the above two are rather strong and would be hard to verify in practical QKD systems. The goal of the paper is to replace those strong assumptions on the light sources with weaker ones. In this paper, we adopt the differential-phase-shift (DPS) QKD protocol and drastically mitigate the requirements on light sources, while for the measurement unit, trusted and photon-number-resolving detectors are assumed. Specifically, we only assume the independence among emitted pulses, the independence of the vacuum emission probability from a chosen bit, and upper bounds on the tail distribution function of the total photon number in a single block of pulses for single, two and three photons. Remarkably, no other detailed characterizations, such as the amount of phase modulation, are required. Our security proof significantly relaxes demands for light sources, which paves a route to guarantee implementation security with simple verification of the devices.

本文言語英語
論文番号87
ジャーナルnpj Quantum Information
5
1
DOI
出版ステータス出版済み - 2019/12/01

ASJC Scopus 主題領域

  • コンピュータ サイエンス(その他)
  • 統計物理学および非線形物理学
  • コンピュータ ネットワークおよび通信
  • 計算理論と計算数学

フィンガープリント

「Quantum key distribution with simply characterized light sources」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル