Privacy-Preserving Autonomous Vehicle Group Formation in a Collusive Attack Scenario

Zebin Xiang*, Jiu Jun Cheng, Cong Liu, Qichao Mao, Guiyuan Yuan, Shangce Gao

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

1 被引用数 (Scopus)

抄録

The dynamic topologies and sensitive information exchanged among autonomous vehicle groups make them prime targets for attackers. In particular, in a collusive attack scenario, malicious nodes can collaborate to manipulate the trust evaluation system, thereby compromising the security of the entire vehicle group. To handle this limitation, this work proposes a privacy-preserving method for forming autonomous vehicle groups in a collusive attack scenario. First, we introduce a distributed trust evaluation algorithm based on a federated learning topology, which preserves local data privacy while facilitating reliable inter-vehicle trust computation. Then, we propose a PageRank-based detection mechanism that analyzes the trust propagation network to identify potential collusive attackers. Finally, we present a privacy-preserving method for autonomous vehicle group formation. Experimental results show that our proposed approach significantly improves the security and stability of autonomous vehicle groups compared to existing methods.

本文言語英語
ジャーナルIEEE Internet of Things Journal
DOI
出版ステータス受理済み/印刷中 - 2025

ASJC Scopus 主題領域

  • 信号処理
  • 情報システム
  • ハードウェアとアーキテクチャ
  • コンピュータ サイエンスの応用
  • コンピュータ ネットワークおよび通信

フィンガープリント

「Privacy-Preserving Autonomous Vehicle Group Formation in a Collusive Attack Scenario」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル