Predictive Cost Adaptive Control: A Numerical Investigation of Persistency, Consistency, and Exigency

Tam W. Nguyen, Syed Aseem Ul Islam, Dennis S. Bernstein, Ilya V. Kolmanovsky*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

25 被引用数 (Scopus)

抄録

Among the multitude of modern control methods, model predictive control (MPC) is one of the most successful [1]-[4]. As noted in 'Summary,' this success is largely due to the ability of MPC to respect constraints on controls and enforce constraints on outputs, both of which are difficult to handle with linear control methods, such as linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG), and nonlinear control methods, such as feedback linearization and sliding mode control. Although MPC is computationally intensive, it is more broadly applicable than Hamilton-Jacobi-Bellman-based control and more suitable for feedback control than the minimum principle. In many cases, the constrained optimization problem for receding-horizon optimization is convex, which facilitates computational efficiency [5].

本文言語英語
ページ(範囲)64-96
ページ数33
ジャーナルIEEE Control Systems
41
6
DOI
出版ステータス出版済み - 2021/12/01

ASJC Scopus 主題領域

  • 制御およびシステム工学
  • モデリングとシミュレーション
  • 電子工学および電気工学

フィンガープリント

「Predictive Cost Adaptive Control: A Numerical Investigation of Persistency, Consistency, and Exigency」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル