Population interaction network in representative differential evolution algorithms: Power-law outperforms Poisson distribution

Xiaosi Li, Jiayi Li, Haichuan Yang, Yirui Wang*, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

19 被引用数 (Scopus)

抄録

Differential evolution is a classical and effective evolutionary algorithm. In recent years, many differential evolution variants have been proposed and achieved good results on many problems. To investigate their inherent characteristics, this paper uses the population interaction network. Six representative differential evolution algorithms including DE, JADE, CJADE, SHADE, L-SHADE, and EBLSHADE are analyzed from the perspective of information interaction among individuals. The cumulative distribution function of degrees of nodes obtained from the population interaction network on thirty IEEE CEC2017 benchmark functions is fitted by seven distribution models. Results show that the cumulative distribution function of differential evolution is the Poisson distribution whereas the other variants meet the Power-law distribution. The Power-law distribution influences their performance and depends on the population size. These remarkable findings suggest that the Power-law distribution widely exists in best-performing differential evolution algorithms, which gives empirical evidence for designing Power-law distribution-based differential evolution algorithms.

本文言語英語
論文番号127764
ジャーナルPhysica A: Statistical Mechanics and its Applications
603
DOI
出版ステータス出版済み - 2022/10/01

ASJC Scopus 主題領域

  • 統計物理学および非線形物理学
  • 統計学および確率

フィンガープリント

「Population interaction network in representative differential evolution algorithms: Power-law outperforms Poisson distribution」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル