Performance Evaluation of Detection Model for Road Surface Damage using YOLO

Tomoya Fujii*, Rie Jinki, Yuukou Horita

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

1 被引用数 (Scopus)

抄録

The social infrastructure, including roads and bridges built during Japan's period of rapid economic growth, is rapidly deteriorating, and there is a need to strategically maintain and renew the social infrastructure that is aging all at once. On the other hand, in road maintenance and management in rural areas, it is not realistic to increase the number of road management patrol cars or the number of specialized engineers engaged in road maintenance and management, and the reduction of management budgets and the shortage of engineers due to the declining birthrate and aging population are serious problems. In addition, in rural areas, it is difficult to conduct all road inspections by visual inspection, which is performed by expert road maintenance technicians, and an inexpensive, high-precision system that can automatically detect road surface damage through image analysis or other means is required. In this study, we construct a road surface damage detection model using YOLOv5, a machine learning algorithm capable of real-time.

本文言語英語
ホスト出版物のタイトルGCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics
出版社Institute of Electrical and Electronics Engineers Inc.
ページ216-217
ページ数2
ISBN(電子版)9798350340181
DOI
出版ステータス出版済み - 2023
イベント12th IEEE Global Conference on Consumer Electronics, GCCE 2023 - Nara, 日本
継続期間: 2023/10/102023/10/13

出版物シリーズ

名前GCCE 2023 - 2023 IEEE 12th Global Conference on Consumer Electronics

学会

学会12th IEEE Global Conference on Consumer Electronics, GCCE 2023
国/地域日本
CityNara
Period2023/10/102023/10/13

ASJC Scopus 主題領域

  • 人工知能
  • エネルギー工学および電力技術
  • 電子工学および電気工学
  • 安全性、リスク、信頼性、品質管理
  • 器械工学
  • 原子分子物理学および光学

フィンガープリント

「Performance Evaluation of Detection Model for Road Surface Damage using YOLO」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル