PD-REAL: A 3D Anomaly Detection Dataset with Play-Doh and RealSense

Jianjian Qin, Chunzhi Gu, Jun Yu, Chao Zhang*

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

抄録

We present PD-REAL, a novel dataset for unsupervised anomaly detection (AD) in the 3D domain. It is motivated by the fact that 2D-only representations in the AD task may fail to capture the geometric structures of anomalies due to uncertainty in lighting conditions or shooting angles. PD-REAL consists entirely of Play-Doh models for 15 object categories and focuses on the analysis of potential benefits from 3D information in a controlled environment. Specifically, objects are first created with six types of anomalies, such as dent, crack, or perforation, and then photographed under different lighting conditions to mimic real-world inspection scenarios. To demonstrate the usefulness of 3D information, we use a commercially available RealSense camera to capture RGB and depth images. Compared to the existing 3D dataset for AD tasks, the data acquisition of PD-REAL is significantly cheaper, easily scalable and easier to control variables. Extensive evaluations with state-of-the-art AD algorithms on our dataset demonstrate the benefits as well as challenges of using 3D information.

本文言語英語
ホスト出版物のタイトルProceedings of 2023 7th Asian Conference on Artificial Intelligence Technology, ACAIT 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ909-913
ページ数5
ISBN(電子版)9798350359145
DOI
出版ステータス出版済み - 2023
イベント7th Asian Conference on Artificial Intelligence Technology, ACAIT 2023 - Quzhou, 中国
継続期間: 2023/11/102023/11/12

出版物シリーズ

名前Proceedings of 2023 7th Asian Conference on Artificial Intelligence Technology, ACAIT 2023

学会

学会7th Asian Conference on Artificial Intelligence Technology, ACAIT 2023
国/地域中国
CityQuzhou
Period2023/11/102023/11/12

ASJC Scopus 主題領域

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • 制御と最適化

フィンガープリント

「PD-REAL: A 3D Anomaly Detection Dataset with Play-Doh and RealSense」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル