Particle Swarm Optimization with Gaussian Disturbance-based Elite Population for Single-objective Problem

Zhiming Zhang, Qingya Sui, Lingyu Qi*, Yaotong Song, Shangce Gao*

*この論文の責任著者

研究成果: 書籍の章/レポート/会議録会議への寄与査読

抄録

Single-objective optimization, especially with con- straints, is the most common class of problems in biology, society, and energy. Among various optimization algorithms, swarm intelligence algorithms is undoubtedly an effective methods to solve this type of problem. In this study, we propose a novel swarm intelligence optimization method, namely GuLo, which adopts Gaussian random disturbance into elite population-based particle swarm optimization, which leads the improvement of local search. Comprehensive experimental results on a typical single-objective constrained optimization problem benchmark shows that GuLo has the outstanding performance than other state-of-the-art meta-heuristic optimization approaches.

本文言語英語
ホスト出版物のタイトルIEEE ITAIC 2023 - IEEE 11th Joint International Information Technology and Artificial Intelligence Conference
編集者Bing Xu, Kefen Mou
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1357-1361
ページ数5
ISBN(電子版)9798350333664
DOI
出版ステータス出版済み - 2023
イベント11th Joint International Information Technology and Artificial Intelligence Conference, ITAIC 2023 - Chongqing, 中国
継続期間: 2023/12/082023/12/10

出版物シリーズ

名前IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC)
ISSN(印刷版)2693-2865

学会

学会11th Joint International Information Technology and Artificial Intelligence Conference, ITAIC 2023
国/地域中国
CityChongqing
Period2023/12/082023/12/10

ASJC Scopus 主題領域

  • 人工知能
  • 情報システム

フィンガープリント

「Particle Swarm Optimization with Gaussian Disturbance-based Elite Population for Single-objective Problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル