Oxidative Reforming of Methane over Rh-Containing Zeolites: Active Species and Role of Zeolite Framework

Ryota Osuga*, Shuhei Yasuda, Masato Sawada, Ryo Manabe, Hisashi Shima, Susumu Tsutsuminai, Atsushi Fukuoka, Hirokazu Kobayashi, Atsushi Muramatsu, Toshiyuki Yokoi*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

7 被引用数 (Scopus)

抄録

Rh ion-exchanged Y zeolite (Rh-Y) and amorphous silica-alumina (Rh-ASA) were prepared by the ion-exchange method. The Rh species were identified by UV-vis and IR spectroscopies, TEM, and H2-TPR measurements. Isolated Rh cations were preferentially formed on the Y zeolite, while Rh oxide mainly existed on ASA. The catalytic activities of the prepared samples for oxidative reforming of methane were evaluated. The Rh oxide on Rh-ASA exhibited slightly higher methane conversion and CO yield than those of the isolated Rh cation on Rh-Y. On the other hand, the catalytic lifetime over Rh-Y was longer than that over Rh-ASA because the isolated Rh cations were protected from aggregation by electrostatic interaction with the zeolite framework. In addition, Rh-Y exhibited a high catalytic activity even at low Rh contents owing to its high dispersibility. On the basis of the experimental facts, we have successfully clarified the active Rh species for this oxidative reforming of methane and demonstrated the effectiveness of the zeolite framework for the stabilization of the active species. This article provides the important concept for the design of highly active catalysts in this catalytic system.

本文言語英語
ページ(範囲)8696-8704
ページ数9
ジャーナルIndustrial and Engineering Chemistry Research
60
24
DOI
出版ステータス出版済み - 2021/06/23

ASJC Scopus 主題領域

  • 化学一般
  • 化学工学一般
  • 産業および生産工学

フィンガープリント

「Oxidative Reforming of Methane over Rh-Containing Zeolites: Active Species and Role of Zeolite Framework」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル