On the double series expansion of holomorphic functions

Keiko Fujita*, Mitsuo Morimoto

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

2 被引用数 (Scopus)

抄録

A holomorphic function f in a neighborhood of 0 in Cn+1 can be expanded into the double series: f(z) = ∑k=0l=0[k/2] (z2)l fk,k-2l(z), where fk,k-2l is a homogeneous harmonic polynomial of degree k - 2l and z2 = z12 + ⋯ + zn+12. We characterized holomorphic functions on the complex Euclidean ball, on the Lie ball or on the dual Lie ball by the growth behavior of homogeneous harmonic polynomials in their double series expansion. In this paper, we consider holomorphic functions and analytic functionals on an Np-ball which lies between the Lie ball and the dual Lie ball, and characterize them by the growth behavior of homogeneous harmonic polynomials. Our results lead a new proof of a known theorem on the Fourier-Borel transformation.

本文言語英語
ページ(範囲)335-348
ページ数14
ジャーナルJournal of Mathematical Analysis and Applications
272
1
DOI
出版ステータス出版済み - 2002/08/01

ASJC Scopus 主題領域

  • 分析
  • 応用数学

フィンガープリント

「On the double series expansion of holomorphic functions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル