Numerical stability analysis of FDLBM

Takeshi Seta*, Ryoichi Takahasi

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

30 被引用数 (Scopus)

抄録

We analyze the numerical stability of Finite Difference Lattice Boltzmann Method (FDLBM) by means of von Neumann stability analysis. The stability boundary of the FDLBM depends on the BGK relaxation time, the CFL number, the mean flow velocity, and the wavenumber. As the BGK relaxation time is increased at constant CFL number, the stability of the central difference LB scheme may not be ensured. The limits of maximum stable velocity are obtained around 0.39, 0.43, and 0.43 for the central difference, for the explicit upwind difference, and for the semi-implicit upwind difference schemes, respectively. We derive artificial viscosities for every difference scheme and investigate their influence on numerical stability. The requirements for artificial viscosity is consistent with the conditions derived from von Neumann stability analysis. This analysis elucidates that the upwind difference schemes are suitable for simulation of high Reynolds number flows.

本文言語英語
ページ(範囲)557-572
ページ数16
ジャーナルJournal of Statistical Physics
107
1-2
DOI
出版ステータス出版済み - 2002

ASJC Scopus 主題領域

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Numerical stability analysis of FDLBM」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル