抄録
This paper proposes applying the two-stage diagonally implicit Runge-Kutta (2S-DIRK) method of numerical integration to the calculation of electromagnetic transients (EMTs) in a power system. The accuracy and the numerical stability of 2S-DIRK are almost the same as those of the trapezoidal method, while 2S-DIRK does not produce sustained numerical oscillation due to a sudden change of an inductor current or a capacitor voltage unlike the trapezoidal method. First, this paper reviews the 2S-DIRK integration scheme and derives the 2S-DIRK formulas of inductors and capacitors for both linear and nonlinear cases. Then, analytical comparisons of 2S-DIRK with the trapezoidal, backward Euler, and Gear-Shichman methods are carried out, and numerical examples which verify the analytical comparisons are shown. Finally, 2S-DIRK is compared with critical damping adjustment (CDA) implemented in Electromagnetic Transients Program (EMTP) for some simulation cases.
本文言語 | 英語 |
---|---|
ページ(範囲) | 390-399 |
ページ数 | 10 |
ジャーナル | IEEE Transactions on Power Delivery |
巻 | 24 |
号 | 1 |
DOI | |
出版ステータス | 出版済み - 2009 |
ASJC Scopus 主題領域
- エネルギー工学および電力技術
- 電子工学および電気工学