Numerical approach to transient dynamics of oscillatory pulses in a bistable reaction-diffusion system

Masaharu Nagayama, Kei Ichi Ueda*, Masaaki Yadome

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

11 被引用数 (Scopus)

抄録

Various types of interesting pattern dynamics such as self-replicating patterns and spiral patterns have been observed in reaction-diffusion (RD) systems. In recent years, periodically oscillating pulses called breathers have been found in several RD systems. In addition, the transient dynamics from traveling breathers to standing breathers have been numerically investigated, and the existence and stability of breathers have been studied by (semi-) rigorous approaches. However, the mechanism of transient dynamics has yet to be clarified, even using numerical approaches, since the global bifurcation diagram of breathers has not been obtained. In this article, we propose a numerical scheme that enables unstable breathers to be tracked. By using the global bifurcation diagram, we numerically investigate the global behavior of unstable manifolds emanating from the bifurcation point associated with the transient dynamics and clarify the onset mechanism of the transient dynamics.

本文言語英語
ページ(範囲)295-322
ページ数28
ジャーナルJapan Journal of Industrial and Applied Mathematics
27
2
DOI
出版ステータス出版済み - 2010/09

ASJC Scopus 主題領域

  • 工学一般
  • 応用数学

フィンガープリント

「Numerical approach to transient dynamics of oscillatory pulses in a bistable reaction-diffusion system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル