Multiple Elite Individual Guided Piecewise Search-Based Differential Evolution

Shubham Gupta*, Shitu Singh, Rong Su, Shangce Gao*, Jagdish Ch Bansal

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

10 被引用数 (Scopus)

抄録

The differential evolution (DE) algorithm relies mainly on mutation strategy and control parameters' selection. To take full advantage of top elite individuals in terms of fitness and success rates, a new mutation operator is proposed. The control parameters such as scale factor and crossover rate are tuned based on their success rates recorded over past evolutionary stages. The proposed DE variant, MIDE, performs the evolution in a piecewise manner, i.e., after every predefined evolutionary stages, MIDE adjusts its settings to enrich its diversity skills. The performance of the MIDE is validated on two different sets of benchmarks: CEC 2014 and CEC 2017 (special sessions & competitions on real-parameter single objective optimization) using different performance measures. In the end, MIDE is also applied to solve constrained engineering problems. The efficiency and effectiveness of the MIDE are further confirmed by a set of experiments.

本文言語英語
ページ(範囲)135-158
ページ数24
ジャーナルIEEE/CAA Journal of Automatica Sinica
10
1
DOI
出版ステータス出版済み - 2023/01/01

ASJC Scopus 主題領域

  • 制御およびシステム工学
  • 情報システム
  • 制御と最適化
  • 人工知能

フィンガープリント

「Multiple Elite Individual Guided Piecewise Search-Based Differential Evolution」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル