Multimodal Deep Learning-based Radiomics Approach for Predicting Surgical Outcomes in Patients with Cervical Ossification of the Posterior Longitudinal Ligament

Satoshi Maki*, Takeo Furuya, Keiichi Katsumi, Hideaki Nakajima, Kazuya Honjoh, Shuji Watanabe, Takashi Kaito, Shota Takenaka, Yuya Kanie, Motoki Iwasaki, Masayuki Furuya, Gen Inoue, Masayuki Miyagi, Shinsuke Ikeda, Shiro Imagama, Hiroaki Nakashima, Sadayuki Ito, Hiroshi Takahashi, Yoshiharu Kawaguchi, Hayato FutakawaKazuma Murata, Toshitaka Yoshii, Takashi Hirai, Masao Koda, Seiji Ohtori, Masashi Yamazaki

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

5 被引用数 (Scopus)

フィンガープリント

「Multimodal Deep Learning-based Radiomics Approach for Predicting Surgical Outcomes in Patients with Cervical Ossification of the Posterior Longitudinal Ligament」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

Keyphrases

Medicine and Dentistry

Nursing and Health Professions

Biochemistry, Genetics and Molecular Biology

Neuroscience